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disease in a metapopulation: the role of dispersal range

Here we derive the equations of the first spatial moment (eqn. 2 in the main text), and its first
order perturbation expansion. The general procedure closely follows that in previous papers, in
particular Ovaskainen and Cornell (2006) and Cornell and Ovaskainen (2008).

Derivation of the moment equations

First, note that the sets S(t), I(t) and E(t) are sets of points in 2-dimensional space and so can
be described as sums of delta-distributions, e.g.

S(x, t) =
∑
i

δ(x− xi)

where xi is the location of the ith susceptible population (subsequently we will write S(x, t) = S
etc. where the space and time dependence is clear). The dynamics of the three sets are fully
described by the transition rates given in the sections “Site dynamics” and “Site type transition
rates” in the main text. For the derivation it is convenient to write them as a system of stochastic
differential equations,

dS =
[
mS(DS ∗ S)E −mIb(DI ∗ I)S +mP (DP ∗ I)S

−(µS + β)S
]
dt+ dηS (1)

dI =
[
mI(DI ∗ S)E +mIb(DI ∗ I)S +mP (DP ∗ I)S

−(µI + β)I
]

+ dηI (2)

dQ =
[
αν − βQ

]
+ dηQ, (3)

where Q = S + I + E is the set of all sites, ∗ denotes convolution and the terms of the form
dηX represent the stochastic noise that is generated by the underlying stochasticity of the site
dynamics. By definition, the expectation of this noise is zero.

To transition from the individual-based description of the model to the population based
moment-equations, we first decompose the state variables into the first spatial moment and resid-
ual, for example

S(x, t) = S̄(t) + Ss(x, t) (4)

where ·̄ denotes expectation over realisations of the underlying model and ·s(x, t) represents the
stochastic fluctuation around this (i.e. Ss(x, t) = 0). We will also need the second spatial moments
GXY (ρ, t), which are defined as, for example,

GSE(ρ = |x1 − x2|, t) = Ss(x1, t)Es(x2, t).
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The dynamics of the first spatial moments

To derive ordinary differential equations for the dynamics of the first spatial moments (eqn. 2 in
the main text), we substitute the first moment decompositions (eqn. 4) into equations 1-3 above,
and take expectations of each side. For example,

dS

dt
=

dS

dt

=
[
mS(DS ∗ (S̄ + Ss))(Ē + Es)−mIb(DI ∗ (Ī + Is))(S̄ + Ss)

−mP (DP ∗ (Ī + Is))(S̄ + Ss)− (µS + β)(S̄ + Ss)
]
dt+

dηS
dt

=
[
mSSE −mIbSI −mPSI − (µS + β)S

]
︸ ︷︷ ︸

independent of spatial structure

+
[
mS(DS ∗ Ss)Es −mIb(DI ∗ Is)Ss −mP (DP ∗ Is)Ss

]
︸ ︷︷ ︸

contribution of spatial structure

. (5)

This is equivalent to the the dS̄/dt component of eqn. 2 in the main text, because the covariance
terms such as (DS ∗ Ss)Es are equivalent to Γ terms, in this example ΓSSE , as defined in the main
text (eqn. 1). This follows from expanding the convolution,

(DS ∗ Ss)Es =

∫
DS(y)Ss(x− y)dyEs(x)

=

∫
DS(y)GSE(y)dy

= ΓSSE .

The dI
dt and dQ̄

dt = d(S+I+E)
dt terms of eqn. 2 in the main text are similarly derived.

The dynamics of the second spatial moments

Before applying the perturbation expansion, we need to derive equations for the dynamics of the
second moment terms (Gij) from which we can calculate the Γ terms. We can derive expressions
for the evolution of the covariance terms, for example

dGSI(x, t) = GSI(x, t+ δt)−GSI(x, t)
= (Ss + dSs)(Is + dIs)− SsIs
= dSsIs + SsdIs + dSsdIs

⇒ dGij(x, t) = disjs + isdjs + disdjs (i, j ∈ {S, I,Q}) (6)

These equations can be expanded by extracting the residual stochastic parts of the original
stochastic differential equations (eqns 1-3). The expanded expressions fast become complex and
so we give a representative sample here rather than the full derivations. The derivative dGSS

dt (x, t)
contains terms that stem from the colonisation of empty sites by susceptible populations. In
equation 1 this is represented by the term mS(DS ∗ S)Edt. The expansion of dGSS(x, t) thus
contains the terms

2mS

(
[(DS ∗ SS)Ē + S̄ES + (DS ∗ SS)Es]Ss

)
dt (7)
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which come from expanding the first two terms on the right hand side of eqn. 6. The third term
is the covariance of noise associated with this event (written dηSdηScolonisation = dηSdηS due to
this kind of infection). This is derived by considering a small region of size dx around the point
x, where dx is so small that it contains at most one site. In the small time interval dt we have

dηSdηScolonisation(x) = (−1/dx)2︸ ︷︷ ︸
change to S

× E(x)dx︸ ︷︷ ︸
region has empty site

× mS(DS ∗ S)(x)dt︸ ︷︷ ︸
it is colonised during dt

= ms(DS ∗ S)Eδ(x)dt (in the limit of dx→ 0). (8)

Combining eqns. 7 and 8, we find that dGSS

dt (x, t) contains the terms

ms

(
2ĒDS ∗GSS + 2S̄GSE + 2DS ∗HSSE + δ(x)(S̄Ē +DS ∗GSE)

)
(9)

where the triplet term HSSE is a third spatial moment. We note that the second moment
GSS(x, t) contains a delta peak because of the ‘self-covariance’ of a given site,

GSS(x, t) = Ss(x, t)Ss(x, t) = S̄δ(x).

It is convenient to take a final step of removing all δ peaks from the covariance terms Gij , by
defining the smooth part of the matrix G as G∗,

G∗(x) = G(x)−Πδ(x)

where Π(x) is the diagonal matrix

Π(x) =

S̄, 0, 00, Ī, 0
0, 0, Ē

 . (10)

Substituting the smoothed version of G into eqn. 9 removes the delta term from the derivative,
so that

dG∗SS
dt

(x, t) =
dG∗SS
dt

(x, t)− dS̄

dt
(x, t)δ(x)

= ms

(
2ĒDS ∗ (G∗SS + S̄δ(x)) + 2S̄G∗SE + 2DS ∗HSSE (11)

+δ(x)(S̄Ē +DS ∗G∗SE)

−(S̄Ē +DS ∗GSE)δ(x)
)

+ · · · [terms from other processes e.g. infection]

= 2ms(Ē(DS ∗G∗SS + S̄DS) + S̄G∗SE +DS ∗HSSE) + · · · (12)

Perturbation expansion

The essence of the perturbation expansion is to redefine each spatial moment as power-series, such
as equation 3 in the main text,

S(t) = S(t)(0) + εS(t)(1) + ε2S(t)(2) + · · · ,

and collect terms of equal order. It can be shown (Cornell and Ovaskainen, 2008) that the nth

contains no terms of order n− 2, so we have
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G∗ij = εG
(1)∗

ij + ε2G
(2)∗

ij + · · · ,

H∗ijk = ε2H
(2)∗

ijk + · · · etc.

The mean field behaviour of the model can thus be studied by ignoring the second (G) and
higher moments, and the first order solution can be studied by ignoring H and the higher moments.
Due to the convolutions in the equations of the second moment dynamics, it is convenient to
transform these equations into Fourier space (this converts convolutions into products).

As stated in the main text, the perturbation parameter ε inversely scales the widths of the
environment and dispersal kernels in the model, by defining each of the kernel scales via an implicit
parameter, ((δS , δI , δP , λ) = (δ′S , δ

′
I , δ
′
P , λ

′)/
√
ε).

Expansion of the first moment

Mean field (‘zeroth order’)

At the limit of ε → 0, the spatial kernels become infinitely broad so that the spatial structure
of the metapopulation becomes irrelevant to the metapopulation dynamics. This is the “mean-
field” limit and metapopulation models of this type are sometimes called “spatially implicit” or
“classical”. Since the covariance terms (G) are zero in this limit, these can be ignored to obtain
the spatially implicit version of this model from equation 1 and the others like it. This is given by

dS
(0)

dt
= mSS

(0)
E

(0) −mIbS
(0)
I

(0) −mPS
(0)
I

(0) − (µS + β)S
(0)

(13)

dI
(0)

dt
= mII

(0)
E

(0)
+mIbS

(0)
I

(0)
+mPS

(0)
I

(0) − (µI + β)I
(0)

(14)

dQ
(0)

dt
= αν − βQ(0)

(15)

First order

The first order equations are derived by substituting all terms up to first order into the first
moment equations (eqn. 1 etc), and collecting the first order parts. For example, equation 1
becomes

ε
dS

(1)

dt
= ε

[
mS(S

(0)
E

(1)
+ S

(1)
E

(0)
) (16)

−mIb(S
(0)
I

(1)
+ S

(1)
I

(0)
) (17)

−mP (S
(0)
I

(1)
+ S

(1)
I

(0)
)− (µS + β)S

(1)

+mSΓS
(1)

SE −mIbΓ
I(1)

SI −mPΓP
(1)

SI

]
(18)

Expansion of R∗

The exact expression for R∗ is given in the main text (eqn. 5),

R∗ =
1

µI + β

(
mI(1− S∗) +mIbS

∗ +mPS
∗ + lim

Ī→0

mIΓ
I
IE +mIbΓ

I
SI +mPΓPSI

Ī

)
. (19)

where we have assumed that the landscape parameters (α, ν, β) are such that the average density
of sites Q̄∗ in equilibrium is one (Q̄∗ = αν

β , this assumption is used for all the model analysis in

the main text).
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The Γ terms in eqn. 19 relate to how R∗ depends on the location of the initial diseased
populations, while the S̄∗ terms describe the role of susceptible population size. In the mean field
model, the Γ terms are zero and the mean field equation for R∗ is thus

R
(0)
∗ =

1

µI + β
(mI(1− S(0)∗) +mIbS

(0)∗ +mPS
(0)∗). (20)

The first order equations involve the gamma terms, yet these will depend on the initial place-
ment of the infection. In the main text, we consider two alternatives for the initial disease place-
ment.

(a) The disease initially occurs at a patch chosen at random among all the patches.

(b) The disease initially converts a randomly chosen susceptible population .

To implement these assumptions we suppose the initial set of infected populations is a small
subset of the set of (a) all the sites (I(0) ∼ Q∗) or (b) the susceptible populations in the pre-disease
equilibrium (I(0) ∼ S∗). In case (a) we have

I(0) = lim
Ī→0

ĪQ

⇒ (GIE , GSI) = lim
Ī→0

Ī(G∗QE , G
∗
SQ)

⇒ lim
Ī→0

(ΓIIE ,Γ
I
SI ,Γ

P
SI)

Ī
= (ΓIQE ,Γ

I
SQ,Γ

P
SQ). (21)

where we have assumed αν
β = Q∗ = 1.

In case (b),

I(0) = lim
Ī→0

ĪS∗/S̄∗

(GIE , GSI) = lim
Ī→0

Ī

S̄∗
(G∗SE , G

∗
SS)

⇒ lim
Ī→0

(ΓIIE ,Γ
I
SI ,Γ

P
SI)

Ī
=

(ΓISE ,Γ
I
SS ,Γ

P
SS)

S̄∗
. (22)

These expressions can be substituted into (19), and the first order parts are collected to obtain
first order expressions for R∗,

R
(1)
∗ =

1

µI + β
(mI(1− S(1)∗) +mIbS

(1)∗ +mPS
(1)∗) (23)

+

{
mIΓ

I(0)∗

QE +mIbΓ
I(0)∗

SQ +mPΓP
(0)∗

SQ if (a), I(0) ∼ Q∗

(mIΓ
I(0)∗

SE +mIbΓ
I(0)∗

SS +mPΓP
(0)∗

SS )/(S̄(0)∗) if (b), I(0) ∼ S∗.
(24)
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